APPLYING THE EM ALGORITHM FOR A GAUSSIAN MIXTURE
DOI:
https://doi.org/10.30888/2415-7538.2020-18-01-028Keywords:
Data Mining, clustering, Expectation-Maximization algorithm, parameter estimation, maximum likelihood estimation, Gaussian mixtureAbstract
Clustering is one of the most important tasks of Data Mining. Currently, a large number of clustering methods and algorithms have been developed, but, unfortunately, not all of them can work effectively with large data sets, so further research in this diMetrics
References
Dempster, A., Laird, N., and Rubin, D. Maximum likelihood from incomplete data via the EM algorithm // Journal of the Royal Statistical Society. Series B (Methodological), 39(1), pp. 1–38, 1977.
Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности // (Справочное издание) - М.: Финансы и статистика, 1989. С. 196
Redner, R. and Homer, W. F. Mixture densities, maximum likelihood and the EM algorithm // SIAM Review, 26(2), pp. 195–239, 1984.
Aitkin, M. and Aitkin, I. A hybrid EM / Gauss-Newton algorithm for maximum likelihood in mixture distributions // Statistics and Computing, 6, pp. 127–130, 1996
McLachlan, G. and Krishnan, T. The EM Algorithm and Extensions // Wiley Series in probability and statistics, New York, 1997.
Seidel, W., Mosler, K., and Alker, M. A cautionary note on likelihood ratio tests in mixture models // Annals of the Institute of Statistical Mathematics, 52, pp. 481–487, 2000.
Wu, C. On the convergence properties of the EM algorithm // The Annals of Statistics, 11(1), pp. 95–103
Сташков Д.В., Орлов В.И., Насыров И.Р., Казаковцев Л.А. Применение EM-алгоритма со сферическим гауссовым распределением к задаче классификации промышленной̆ продукции // Экономика и менеджмент систем управления, 2017, Т.23, No1.1, С.185-193. 9. Королев В. Ю. ЕМ-алгоритм, его модификации и их применение к задаче разделения смесей вероятностных распределений. Теоретический обзор // ИПИ РАН. М., 2007
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.