THE EXPERIENCE OF DETERMINING THE INFLUENCE OF RADIATION OF INCANDESCENT LAMPS AND LED LAMPS ON BARLEY SEEDLINGS

Authors

DOI:

https://doi.org/10.30888/2415-7538.2019-14-01-023

Keywords:

LED bulbs, incandescent lamps, biological effects, barley seedlings, growth test system.

Abstract

Проведені дослідження показали, що на відстані, яка знімає температурні відмінності випромінювання від LED ламп і ламп розжарювання, і за умови відсутності екранування випромінювання скляною кришкою чашки Петрі, відбувається статистично достовірне гальмув

Metrics

Metrics Loading ...

References

Майоров В.А. Оконные стекла - состояние и перспективы // Оптика и спектроскопия. – 2018. – Т. 124, вып. 4. – С. 559 – 573. https://journals.ioffe.ru/articles/viewPDF/45759.

Островский О.С., Одаренко Е.Н., А.А. Шматько А.А. Защитные экраны и поглотители электромагнитных волн // ФИП. - 2003, том 1, № 2, - С. 161 – 173.

Ahmad M., Cashmore A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor // Nature. – 1993. – Vol. 366(6451). – P. 162 – 166.

Azizi M., Golmohammadi R., Aliabadi M. Comparative Analysis of Lighting Characteristics and Ultraviolet Emissions from Commercial Compact Fluorescent and Incandescent Lamps // J. Res. Health Sci. – 2016. – Vol.16(4). – P. 200 - 205. http://jrhs.umsha.ac.ir/index.php/JRHS/article/view/2489/pdf.

Behar-Cohen F., Martinsons C., Vienot F., Zissis G., Barlier-Salsi A., Cesarini J.P., Enouf O., Garcia M., Picaud S., Attia D. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? // Prog. Retin. Eye Res. – 2011. – Vol. 30(4). – P. 239 - 257. doi: 10.1016/j.preteyeres.2011.04.002.

Belyaev I., Dean A., Eger H., Hubmann G., Jandrisovits R., Kern M., Kundi M., Moshammer H., Lercher P., Müller K., Oberfeld G., Ohnsorge P., Pelzmann P., Scheingraber C., Thill R. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses // Rev. Environ. Health. – 2016. – Vol. 31(3). – P. 363 – 397. doi: 10.1515/reveh-2016-0011.

Chen L., Zhang X.-W. Which lamp will be optimum to eye? Incandescent, fluorescent or LED etc // Int. J. Ophthalmol. – 2015. – Vol. 8(2). – P. 314 – 319.

Deinego V.N., Kaptsov V.A. Energy saving and LED lamp lighting and human health // Gig. Sanit. – 2013. – Vol. 6. – P. 81 - 84.

Devlina Р.F. Plants wait for the lights to change to red // PNAS. – 2016. – Vol. 113, No. 27. – P. 7301 – 7303. http://www.pnas.org/content/pnas/113/ 27/7301.full.pdf.

Fenton L., Moseley H. UV emissions from low energy artificial light sources // Photodermatol Photoimmunol Photomed. – 2014. – Vol. 30(2-3). – P. 153 - 159. doi: 10.1111/phpp.12094.

Gea M., Schiliro T., Iacomussi P., Degan R., Bonetta S., Gilli G. Cytotoxicity and genotoxicity of light emitted by incandescent, halogen, and LED bulbs on ARPE-19 and BEAS-2B cell lines // J. Toxicol. Environ. Health A. – 2018. – Vol. 16. – P. 1 - 17. doi: 10.1080/15287394.2018.1510350.

Goyal A., Szarzynska B., Fankhauser C. Phototropism: at the crossroads of light-signaling pathways // Trends Plant Sci. – 2013. – Vol. 18(7). – P. 393 - 401. doi: 10.1016/j.tplants.2013.03.002.

Jaadane I., Villalpando Rodriguez G.E., Boulenguez P., Chahory S., Carre S., Savoldelli M., Jonet L., Behar-Cohen F., Martinsons C., Torriglia A. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo // J. Cell Mol. Med. – 2017. – Vol. 21(12). – P. 3453 - 3466. doi: 10.1111/jcmm.13255.

James R.H., Landry R.J., Walker B.N., Ilev I.K. Evaluation of the Potential Optical Radiation Hazards with Led Lamps Intended for Home Use // Health Phys. – 2017. – Vol. 112(1). – P. 11 - 17.

Johnson C.F., Brown C.S., Wheeler R.M., Sager J.C., Chapman D.K, Deitzer G.F. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings // Photochem. Photobiol. – 1996. – Vol. 63(2). – P. 238 - 242.

Kaptsov V.A., Deynego V.N., Ulasyuk V.N. Features of White LED Daylight and human health // Gig. Sanit. – 2016. – Vol. 95(7). – P. 597 - 601.

Klinger J. Radio interference from LED lighting. Electronic resource: https://www.emcrules.com/2011/07/radio-interference-from-led-lighting.html).

Krigel A., Berdugo M., Picard E., Levy-Boukris R., Jaadane I., Jonet L., Dernigoghossian M., Andrieu-Soler C., Torriglia A., Behar-Cohen F. Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity // Neuroscience. – 2016. – Vol. 339. – P. 296 - 307. doi: 10.1016/j.neuroscience.2016.10.015.

Koga, R., Meng, T., Nakamura, E., Miura, C., Irino, N., Devkota, H. P., et al. The effect of photo-irradiation on the growth and ingredient composition of young green barley (Hordeum vulgare) // Agric. Sci. – 2013. – Vol. 4. – P.185 – 194. doi: 10.4236/as. 2013.44027.

Ma D., Li X., Guo Y., Chu J., Fang S., Yan C., Noel J.P., Liu H. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light // Proc. Natl. Acad. Sci. USA. – 2016. – Vol. 113(1). – P. 224 - 229. doi: 10.1073/pnas.1511437113.

Necz P.P., Bakos J. Photobiological safety of the recently introduced energy efficient household lamps // Int. J. Occup. Med. Environ. Health. – 2014. – Vol. 27(6). – P. 1036 - 1042. doi: 10.2478/s13382-014-0332-2.

Oh J.H., Yoo H., Park H.K., Do Y.R. Analysis of circadian properties and healthy levels of blue light from smartphones at night // Sci. Rep. – 2015. – Vol. 5:11325. doi: 10.1038/srep11325.

O'Hagan J.B., Khazova M., Price L.L. Low-energy light bulbs, computers, tablets and the blue light hazard // Eye (Lond). – 2016. – Vol. 30(2). – P. 230 - 233. doi: 10.1038/eye.2015.261.

Okuno T., Saito H., Ojima J. Evaluation of blue-light hazards from various light sources // Dev. Ophthalmol. – 2002. – Vol. 35. – P. 104 - 112.

Paris T.M., Allan S.A., Udell B.J., Stansly P.A. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths // PLoS One. - 2017 Dec 13;12(12):e0189228. doi: 10.1371/journal.pone.0189228.

Quint M., Delker C., Franklin K.A., Wigge P.A., Halliday K.J., van Zanten M. Molecular and genetic control of plant thermomorphogenesis // Nat. Plants. – 2016. – Vol. 2:15190. doi: 10.1038/nplants.2015.190.

Renard G., Leid J. The dangers of blue light: True story! // J. Fr. Ophtalmol. – 2016. – Vol. 39(5). – P. 483 - 488. doi: 10.1016/j.jfo.2016.02.003.

Shen C.Y., Xu Z., Zhao S.L., Huang Q.Y. Study on the safety of blue light leak of LED // Guang Pu Xue Yu Guang Pu Fen Xi. – 2014. – Vol. 34(2). – P. 316 - 321.

Sidaway-Lee K., Josse E.M., Brown A., Gan Y., Halliday K.J., Graham I.A., Penfield S. SPATULA links daytime temperature and plant growth rate // Curr. Biol. – 2010. – Vol. 20(16). – P. 1493 - 1497. doi: 10.1016/j.cub.2010.07.028.

Tan Q., Li J. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China // Waste Manag. Res. – 2016. – Vol. 34(1). – P. 67 - 74. doi: 10.1177/0734242X15616473.

Vian A., Davies E., Gendraud M., Bonnet P. Plant Responses to High Frequency Electromagnetic Fields // Biomed. Res. Int. – 2016. – Vol. 2016:1830262. doi: 10.1155/2016/1830262.

Wang L.W., Li Y., Xin G.F., Wei M., Mi Q.H., Yang Q.C. Effects of different proportions of red and blue light on the growth and photosynthesis of tomato seedlings // Ying Yong Sheng Tai Xue Bao. – 2017. – Vol. 28(5). – P. 1595 - 1602. doi: 10.13287/j.1001-9332.201705.010.

Wheeler R.M., Mackowiak C.L., Sager J.C. Soybean stem growth under high-pressure sodium with supplemental blue lighting // Agron J. – 1991. – Vol. 83(5). – P. 903 - 906.

Wigge P.A. Ambient temperature signalling in plants // Curr. Opin. Plant. Biol. – 2013. – Vol. 16(5). – P. 661 – 666. doi: 10.1016/j.pbi.2013.08.004

Zheng X., Wu S., Zhai H., Zhou P., Song M., Su L., Xi Y., Li Z., Cai Y., Meng F., Yang L., Wang H., Yang J. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light // Plant Cell. – 2013. – Vol. 25(1). – P. 15 - 133. doi: 10.1105/tpc.112.107086.

Zukauskas A., Vaicekauskas R., Vitta P. Optimization of solid-state lamps for photobiologically friendly mesopic lighting // Appl. Opt. – 2012. – Vol. 51(35). – P. 8423 - 8432. doi: 10.1364/AO.51.008423.

References:

Mayorov V.A. (2018). Window glass - the state and prospects [Optics and spectroscopy] vol. 124, no. 4, pp. 559-573. https://journals.ioffe.ru/articles/viewPDF/45759.

Ostrovsky O.S., Odarenko E.N., Shmatko A.A. (2003). Protective shields and absorbers of electromagnetic waves [FIP] vol. 1, no. 2, pp. 161-173.

Ahmad M., Cashmore A.R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor [Nature] vol. 366(6451), pp. 162–166.

Azizi M., Golmohammadi R., Aliabadi M. (2016). Comparative Analysis of Lighting Characteristics and Ultraviolet Emissions from Commercial Compact Fluorescent and Incandescent Lamps [J. Res. Health Sci] vol.16(4), pp. 200-205. http://jrhs.umsha.ac.ir/index.php/JRHS/article/view/2489/pdf.

Behar-Cohen F., Martinsons C., Vienot F., Zissis G., Barlier-Salsi A., Cesarini J.P., Enouf O., Garcia M., Picaud S., Attia D. (2011). Light-emitting diodes (LED) for domestic lighting: any risks for the eye? [Prog. Retin. Eye Res.] vol. 30(4), pp. 239-257. doi: 10.1016/j.preteyeres.2011.04.002.

Belyaev I., Dean A., Eger H., Hubmann G., Jandrisovits R., Kern M., Kundi M., Moshammer H., Lercher P., Müller K., Oberfeld G., Ohnsorge P., Pelzmann P., Scheingraber C., Thill R. (2016). EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses [Rev. Environ. Health.] vol. 31(3), pp. 363–397. doi: 10.1515/reveh-2016-0011.

Chen L., Zhang X.-W. (2015). Which lamp will be optimum to eye? Incandescent, fluorescent or LED etc [Int. J. Ophthalmol.] vol. 8(2), pp. 314–319.

Deinego V.N., Kaptsov V.A. (2013). Energy saving and LED lamp lighting and human health [Gig. Sanit.] vol. 6, pp. 81-84.

Devlina Р.F. (2016). Plants wait for the lights to change to red [PNAS] vol. 113, No. 27. pp. 7301–7303. http://www.pnas.org/content/pnas/113/ 27/7301.full.pdf.

Fenton L., Moseley H. (2014) UV emissions from low energy artificial light sources [Photodermatol Photoimmunol Photomed.] vol. 30(2-3), pp. 153-159. doi: 10.1111/phpp.12094.

Gea M., Schiliro T., Iacomussi P., Degan R., Bonetta S., Gilli G. (2018). Cytotoxicity and genotoxicity of light emitted by incandescent, halogen, and LED bulbs on ARPE-19 and BEAS-2B cell lines [J. Toxicol. Environ. Health A.] vol. 16, pp. 1-17. doi: 10.1080/15287394.2018.1510350.

Goyal A., Szarzynska B., Fankhauser C. (2013). Phototropism: at the crossroads of light-signaling pathways [Trends Plant Sci.] vol. 18(7), pp. 393-401. doi: 10.1016/j.tplants.2013.03.002.

Jaadane I., Villalpando Rodriguez G.E., Boulenguez P., Chahory S., Carre S., Savoldelli M., Jonet L., Behar-Cohen F., Martinsons C., Torriglia A. (2017). Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo [J. Cell Mol. Med.] vol. 21(12). pp. 3453-3466. doi: 10.1111/jcmm.13255.

James R.H., Landry R.J., Walker B.N., Ilev I.K. (2017). Evaluation of the Potential Optical Radiation Hazards with Led Lamps Intended for Home Use [Health Phys.] vol. 112(1), pp. 11-17.

Johnson C.F., Brown C.S., Wheeler R.M., Sager J.C., Chapman D.K, Deitzer G.F. (1996). Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings [Photochem. Photobiol.] vol. 63(2), pp. 238-242.

Kaptsov V.A., Deynego V.N., Ulasyuk V.N. (2016). Features of White LED Daylight and human health [Gig. Sanit.] vol. 95(7), pp. 597-601.

Klinger J. (2011). Radio interference from LED lighting. [Electronic resource: https://www.emcrules.com/2011/07/radio-interference-from-led-lighting.html)].

Krigel A., Berdugo M., Picard E., Levy-Boukris R., Jaadane I., Jonet L., Dernigoghossian M., Andrieu-Soler C., Torriglia A., Behar-Cohen F. (2016). Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity [Neuroscience] vol. 339, pp. 296-307. doi: 10.1016/j.neuroscience.2016.10.015.

Koga, R., Meng, T., Nakamura, E., Miura, C., Irino, N., Devkota, H. P., et al. (2013). The effect of photo-irradiation on the growth and ingredient composition of young green barley (Hordeum vulgare) [Agric. Sci.] vol. 4, pp.185–194. doi: 10.4236/as. 2013.44027.

Ma D., Li X., Guo Y., Chu J., Fang S., Yan C., Noel J.P., Liu H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light [Proc. Natl. Acad. Sci. USA] vol. 113(1), pp. 224-229. doi: 10.1073/pnas.1511437113.

Necz P.P., Bakos J. (2014). Photobiological safety of the recently introduced energy efficient household lamps [Int. J. Occup. Med. Environ. Health] vol. 27(6), pp. 1036-1042. doi: 10.2478/s13382-014-0332-2.

Oh J.H., Yoo H., Park H.K., Do Y.R. (2015). Analysis of circadian properties and healthy levels of blue light from smartphones at night [Sci. Rep.] vol. 5:11325. doi: 10.1038/srep11325.

O'Hagan J.B., Khazova M., Price L.L. (2016). Low-energy light bulbs, computers, tablets and the blue light hazard [Eye (Lond).] vol. 30(2), pp. 230-233. doi: 10.1038/eye.2015.261.

Okuno T., Saito H., Ojima J. (2002). Evaluation of blue-light hazards from various light sources [Dev. Ophthalmol.] vol. 35, pp. 104-112.

Paris T.M., Allan S.A., Udell B.J., Stansly P.A. (2017). Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths [PLoS One] vol.12(12):e0189228. doi: 10.1371/journal.pone.0189228.

Quint M., Delker C., Franklin K.A., Wigge P.A., Halliday K.J., van Zanten M. (2016). Molecular and genetic control of plant thermomorphogenesis [Nat. Plants.] vol. 2:15190. doi: 10.1038/nplants.2015.190.

Renard G., Leid J. (2016). The dangers of blue light: True story! [J. Fr. Ophtalmol.] vol. 39(5), pp. 483-488. doi: 10.1016/j.jfo.2016.02.003.

Shen C.Y., Xu Z., Zhao S.L., Huang Q.Y. (2014). Study on the safety of blue light leak of LED [Guang Pu Xue Yu Guang Pu Fen Xi] vol. 34(2), pp. 316-321.

Sidaway-Lee K., Josse E.M., Brown A., Gan Y., Halliday K.J., Graham I.A., Penfield S. (2010). SPATULA links daytime temperature and plant growth rate [Curr. Biol.] vol. 20(16), pp. 1493-1497. doi: 10.1016/j.cub.2010.07.028.

Tan Q., Li J. (2016). Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China [Waste Manag. Res.] vol. 34(1), pp. 67-74. doi: 10.1177/0734242X15616473.

Vian A., Davies E., Gendraud M., Bonnet P. (2016). Plant Responses to High Frequency Electromagnetic Fields [Biomed. Res. Int.] vol. 2016:1830262. doi: 10.1155/2016/1830262.

Wang L.W., Li Y., Xin G.F., Wei M., Mi Q.H., Yang Q.C. (2017). Effects of different proportions of red and blue light on the growth and photosynthesis of tomato seedlings [Ying Yong Sheng Tai Xue Bao] vol. 28(5), pp. 1595-1602. doi: 10.13287/j.1001-9332.201705.010.

Wheeler R.M., Mackowiak C.L., Sager J.C. (1991). Soybean stem growth under high-pressure sodium with supplemental blue lighting [Agron J.] vol. 83(5), pp. 903-906.

Wigge P.A. (2013). Ambient temperature signalling in plants [Curr. Opin. Plant. Biol.] vol. 16(5), pp. 661–666. doi: 10.1016/j.pbi.2013.08.004

Zheng X., Wu S., Zhai H., Zhou P., Song M., Su L., Xi Y., Li Z., Cai Y., Meng F., Yang L., Wang H., Yang J. (2013). Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light [Plant Cell] vol. 25(1), p. 15-133. doi: 10.1105/tpc.112.107086.

Zukauskas A., Vaicekauskas R., Vitta P. (2012). Optimization of solid-state lamps for photobiologically friendly mesopic lighting [Appl. Opt.] vol. 51(35), pp. 8423-8432. doi: 10.1364/AO.51.008423.

Published

2019-06-30

How to Cite

Kundelchuk, O. P., Kotovskij, I. N., Goncharenko, T. L., & Golovko, N. Y. (2019). THE EXPERIENCE OF DETERMINING THE INFLUENCE OF RADIATION OF INCANDESCENT LAMPS AND LED LAMPS ON BARLEY SEEDLINGS. Scientific Look into the Future, 1(14-01), 89–101. https://doi.org/10.30888/2415-7538.2019-14-01-023

Issue

Section

Articles

Most read articles by the same author(s)