SELECTION OF STRUCTURE AND HYPER-PARAMETERS OF SVM FOR EFFICIENT SOLUTION OF THE TASKS OF CLASSIFICATION OF ELECTROMYOGRAPHY SIGNALS

Authors

  • Andrej Vitalevich Semendarov  MIREA - Russian Technological University

DOI:

https://doi.org/10.30888/2415-7538.2019-14-01-010

Keywords:

electromyography signal (EMG), classification algorithms, support-vector machine (SVM), preprocessing and normalization data, SVM hyper-parameters, SVM kernel

Abstract

Support vector machine (SVM) is a widely used machine learning method for the problem of classifying electromyography signals. The purpose of this work is to search for efficient algorithms for the classification of such signals with minimal equipment cos

Metrics

Metrics Loading ...

References

Guo W. et al. Toward an enhanced human–machine interface for upper-limb prosthesis control with combined EMG and NIRS signals //IEEE Transactions on Human-Machine Systems. – 2017. – Т. 47. – №. 4. – С. 564-575.

Fang Y. et al. A multichannel surface EMG system for hand motion recognition //International Journal of Humanoid Robotics. – 2015. – Т. 12. – №. 02. – С. 1550011.

Quitadamo L. R. et al. Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interaction: a review //Journal of neural engineering. – 2017. – Т. 14. – №. 1. – С. 011001.

Лукьянчиков А. И. и др. Алгоритмы классификации одноканального ЭМГ-сигнала для человеко-компьютерного взаимодействия //Cloud of science. – 2018. – Т. 5. – №. 2.

Sharma S., Kumar G. Wavelet analysis based feature extraction for pattern classification from single channel acquired EMG signal //Elixir Online Journal. – 2012. – Т. 50. – С. 0320-1.

Bergstra J., Bengio Y. Random search for hyper-parameter optimization //Journal of Machine Learning Research. – 2012. – Т. 13. – №. Feb. – С. 281-305.

References:

Guo, W., Sheng, X., Liu, H. and Zhu, X., 2017. Toward an enhanced human–machine interface for upper-limb prosthesis control with combined EMG and NIRS signals. IEEE Transactions on Human-Machine Systems, 47(4), pp.564-575;

Fang, Y., Liu, H., Li, G. and Zhu, X., 2015. A multichannel surface EMG system for hand motion recognition. International Journal of Humanoid Robotics, 12(02), p.1550011;

Quitadamo, L.R., Cavrini, F., Sbernini, L., Riillo, F., Bianchi, L., Seri, S. and Saggio, G., 2017. Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interaction: a review. Journal of neural engineering, 14(1), p.011001;

Lukyanchikov, A., Melnikov, A. and Lukyanchikov, O., 2018. Algorithms for classification of a single channel EMG signal for human-computer interaction. In ITM Web of Conferences (Vol. 18, p. 02001). EDP Sciences;

Sharma, S. and Kumar, G., 2012. Wavelet analysis based feature extraction for pattern classification from single channel acquired EMG signal. Elixir Online Journal, 50, pp.0320-1;

Bergstra, J. and Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb), pp.281-305.

Published

2019-06-30

How to Cite

Semendarov, A. V. (2019). SELECTION OF STRUCTURE AND HYPER-PARAMETERS OF SVM FOR EFFICIENT SOLUTION OF THE TASKS OF CLASSIFICATION OF ELECTROMYOGRAPHY SIGNALS. Scientific Look into the Future, 1(14-01), 23–33. https://doi.org/10.30888/2415-7538.2019-14-01-010

Issue

Section

Articles