SENTIMENT ANALYSIS OF NEWS REPORTS
DOI:
https://doi.org/10.30888/2415-7538.2018-09-01-005Keywords:
natural language processing, automatic sentiment analysis, sentiment lexiconAbstract
The paper presents an algorithm for domain-specific sentiment analysis of information messages in relation to objects. Existing methods of text determining emotional evaluation are considered. The developed method uses a vocabulary of tone words, compiledMetrics
References
Karpov I. A., Kozhevnikov M. V., Kazorin V. I., Nemov N. R. Entity Based Sentiment Analysis Using Syntax Patterns and Convolutional Neural Network // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 225-236.
Arkhipenko K., Kozlov I., Trofimovich J., Skorniakov K. et al. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 50-58.
Loukachevitch N. V., Rubtsova Y. V. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 416-426.
Kotelnikov E. V., Bushmeleva N. A., Razova E. V., Peskisheva T. A., Pletneva M. V. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 300-314.
Polyakov P. Yu., Kalinina M. V., Pleshko V. V. Automatic Object-oriented Sentiment Analysis by Means of Semantic Templates and Sentiment Lexicon Dictionaries // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – M.: RSUH, 2015. – Vol. 14(2). – P. 44-52.
Толдова С. Ю., Соколова Е. Г., Астафьева И., Гарейшина А. и др. Оценка методов автоматического анализа текста 2011-2012: синтаксические парсеры русского языка // Компьютерная лингвистика и интеллектуальные технологии: По материалам ежегодной Международной конференции «Диалог». – М.: РГГУ, 2012. – Т. 11(2). – С. 77-90.
Nivre J., Hall J., Nilsson J., Chanev A. et al. MaltParser: A language-independent system for data-driven dependency parsing // Natural Language Engineering. – Cambridge University Press, 2007. – Vol. 13(2) – P. 95-135.
Апресян Ю. Д., Богуславский И. М., Иомдин Б. Л., Иомдин Л. Л. и др. Синтаксически и семантически аннотированный корпус русского языка: современное состояние и перспективы // Национальный корпус русского языка 2003–-2005 гг. (результаты и перспективы). – М.: Индрик, 2005. – С. 193-214.
Natural Language Toolkit – NLTK 3.2.5 documentation [Электронный ресурс]. URL: http://www.nltk.org (дата обращения 22.03.2018).
dustalov/greeb: Greeb is a simple Unicode-aware regexp-based tokenizer [Электронный ресурс]. URL: https://github.com/dustalov/greeb (дата обращения 22.03.2018).
Ilya Segalovich. A Fast Morphological Algorithm with Unknown Word Guessing Induced by a Dictionary for a Web Search Engine // Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications. – Las Vegas, 2003. – P. 273-280.
Mikhail Korobov. Morphological Analyzer and Generator for Russian and Ukrainian Languages // Analysis of Images, Social Networks and Texts. – Vol. 542. – Cham: Springer, 2015. – P. 320-332.
Dubatovka A., Kurochkin Yu., Mikhailova E. Automatic Generation of the Domain-Specific Sentiment Russian Dictionaries // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 146-158.
Koltsova O. Yu., Alexeeva S. V., Kolcov S. N. An Opinion Word Lexicon and a Training Dataset for Russian Sentiment Analysis of Social Media // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 277-287.
Lluís Padró, Evgeny Stanilovsky. FreeLing 3.0: Towards Wider Multilinguality // Proceedings of the Eight International Conference on Language Resources and Evaluation. – Istanbul, Turkey: European Language Resources Association, 2012. – P. 2473-2479.