SENTIMENT ANALYSIS OF NEWS REPORTS

Authors

  • Aleksandr Kamoevich Asiryan Moscow State University Lomonosov http://orcid.org/

DOI:

https://doi.org/10.30888/2415-7538.2018-09-01-005

Keywords:

natural language processing, automatic sentiment analysis, sentiment lexicon

Abstract

The paper presents an algorithm for domain-specific sentiment analysis of information messages in relation to objects. Existing methods of text determining emotional evaluation are considered. The developed method uses a vocabulary of tone words, compiled

Metrics

Metrics Loading ...

References

Karpov I. A., Kozhevnikov M. V., Kazorin V. I., Nemov N. R. Entity Based Sentiment Analysis Using Syntax Patterns and Convolutional Neural Network // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 225-236.

Arkhipenko K., Kozlov I., Trofimovich J., Skorniakov K. et al. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 50-58.

Loukachevitch N. V., Rubtsova Y. V. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 416-426.

Kotelnikov E. V., Bushmeleva N. A., Razova E. V., Peskisheva T. A., Pletneva M. V. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 300-314.

Polyakov P. Yu., Kalinina M. V., Pleshko V. V. Automatic Object-oriented Sentiment Analysis by Means of Semantic Templates and Sentiment Lexicon Dictionaries // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – M.: RSUH, 2015. – Vol. 14(2). – P. 44-52.

Толдова С. Ю., Соколова Е. Г., Астафьева И., Гарейшина А. и др. Оценка методов автоматического анализа текста 2011-2012: синтаксические парсеры русского языка // Компьютерная лингвистика и интеллектуальные технологии: По материалам ежегодной Международной конференции «Диалог». – М.: РГГУ, 2012. – Т. 11(2). – С. 77-90.

Nivre J., Hall J., Nilsson J., Chanev A. et al. MaltParser: A language-independent system for data-driven dependency parsing // Natural Language Engineering. – Cambridge University Press, 2007. – Vol. 13(2) – P. 95-135.

Апресян Ю. Д., Богуславский И. М., Иомдин Б. Л., Иомдин Л. Л. и др. Синтаксически и семантически аннотированный корпус русского языка: современное состояние и перспективы // Национальный корпус русского языка 2003–-2005 гг. (результаты и перспективы). – М.: Индрик, 2005. – С. 193-214.

Natural Language Toolkit – NLTK 3.2.5 documentation [Электронный ресурс]. URL: http://www.nltk.org (дата обращения 22.03.2018).

dustalov/greeb: Greeb is a simple Unicode-aware regexp-based tokenizer [Электронный ресурс]. URL: https://github.com/dustalov/greeb (дата обращения 22.03.2018).

Ilya Segalovich. A Fast Morphological Algorithm with Unknown Word Guessing Induced by a Dictionary for a Web Search Engine // Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications. – Las Vegas, 2003. – P. 273-280.

Mikhail Korobov. Morphological Analyzer and Generator for Russian and Ukrainian Languages // Analysis of Images, Social Networks and Texts. – Vol. 542. – Cham: Springer, 2015. – P. 320-332.

Dubatovka A., Kurochkin Yu., Mikhailova E. Automatic Generation of the Domain-Specific Sentiment Russian Dictionaries // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 146-158.

Koltsova O. Yu., Alexeeva S. V., Kolcov S. N. An Opinion Word Lexicon and a Training Dataset for Russian Sentiment Analysis of Social Media // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialogue». – Vol. 15. – M.: RSUH, 2016. – P. 277-287.

Lluís Padró, Evgeny Stanilovsky. FreeLing 3.0: Towards Wider Multilinguality // Proceedings of the Eight International Conference on Language Resources and Evaluation. – Istanbul, Turkey: European Language Resources Association, 2012. – P. 2473-2479.

Published

2018-04-30

How to Cite

Asiryan, A. K. (2018). SENTIMENT ANALYSIS OF NEWS REPORTS. Scientific Look into the Future, 1(09-01), 27–33. https://doi.org/10.30888/2415-7538.2018-09-01-005

Issue

Section

Articles

Most read articles by the same author(s)