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Summary. The problem of mathematical modeling of the immune response to viral infections
is considered. The mathematical model of the process is described by a system of nonlinear
differential equations with delay. The solution of this system of equations is carried out by an
iterative numerical-analytical method using the Laplace integral transformation. The obtained
results of mathematical modeling provide an opportunity to solve problems of research and
prediction of infectious diseases and to apply the simulation results for the diagnosis of
personalized patients.
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Introduction

For the analysis of the most important physiological processes in infectious
diseases, mathematical modeling i1s widely used, when various diseases are
considered from a single standpoint as a process of interaction of the immune system
with pathogens. Mathematical models of infectious diseases are nonlinear systems of
differential equations and contain a significant number of parameters that
characterize the immune status of the organism and the properties of the antigen. The
basis of mathematical models of the immune response is the fundamental work of
G.I. Marchuk, [2-4,6,7,18] whose models reflect the most significant patterns of
functioning of the immune system in infectious diseases.

Traditional tasks in the field of mathematical modeling in immunology are to
build and study models of the immune response and immune defense of the body in
infectious diseases.

Infectious disease is seen as a conflict between the immune system and a
population of pathogens.

The following essential characteristics of the disease are considered as phase
variables of the model [18]:

1. The concentration of antigens in the affected organ [parts/ml].

2. Plasma cell concentration, [cell/ml], is a population of producers and carriers

of antibodies (immunocompetent cells).

3. The concentration of antibodies in the blood. They neutralize antigens.

4. Relative characteristics of the affected organ, which can be interpreted as a
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proportion of antigen-destroyed cells of the body. This is a generalized
characteristic of the damage that the antigen inflicts on the target organ,,
where is the number of cells of the target organ at the time, the number of
cells is normal.

Formulation of the problem

The model is a system of differential equations with a delayed argument. It

describes the general patterns inherent in all infectious diseases.
dv

— A M+ 7, CW (D =vC () = NI (0 (1)
NIV, ()] = nbes Cy (OB +V, (O (Co )+ m) - 7 FOL (2)
15, 0-0CW, ()= b,C = NGO 3)

NIC, (0] = GE(m)V, (t = D)[Cy (1 1)~ m(t)] + nbeeCy (- DED). (4)

‘;—’? +a,,m(t) = b,C, (1) = N[m(1)] = b, C, (VE(t), £(m)=1-m/C"; )

c;_};.paFF([)—pFP(t)=—}/FVF(Z)Vf~(f)- (6)

The values y,,, 7,7, characterize the inverse values of the interaction time of

free viruses with macrophages, antibodies and healthy cells, respectively.
The function m(z) 1s defined as [15]:

m(t):MO_Ml(t),
MO
where M,- the characteristics of a healthy organ (mass or volume); M,(¢)-

characteristics of the healthy part of the body at the time.
The level of antigen concentration V,(¢) is the main indicator of the dynamics of

the disease and the functioning of the immune system. Since in equation (5) there is
an expression b..C,(¢)E(t), that contains a function defined in the block T-cellular

immune response to make independent solutions of equations that describe the
dynamics of processes in these blocks, we consider only the linear part of the
equation:

dE () dP(t)

+a,E” ()= a,E’;

+a,P=a,.

A large number of scientific papers, for example, [2,9,13], are devoted to the
search for solutions of systems of differential equations with a deviating argument, in
the vast majority of which difference schemes of the Runge-Kutta type are used
[11,12,14,19] relative to the linear part of the system of differential equations.

The aim of the work is to develop a method for solving systems of nonlinear
differential equations with a deviating argument based on an iterative numerical-
analytical method [5].

Solving the problem

Denote by y, =V,(t), »,=C,(t), y;=m(t), y,=F(), ys(t)=P(t). We have the
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following system of equations to determine the functions that simulate the block of
the target organ:

DD 4 0= 30+ NG ™

[a, v 0 0 0]
S

—C* b, 0 0 0
A= 0 b a, 0 O
0 0O 0 a. p;-
0 0 0 0 a,]
y,=[0 b,C° 0 0 a,P°T; )

N=[N, N, Ny3 N, NyS]T; (10)
N, =nb{y,(0)-EV () + y, ()7 (0, () + y5(0)) = 75 4 (O));
N, =oy(t=0)y,(t =7) = »;(O1+nb{ y,(t —)E® (t);
N, =biy,(OE”(t); N, =y »(0)y,(0);
Initial conditions for this system of equations:

PO =V ()= 3,(0)=C,(0)=C; y5(0)=m(0) = my;

y,(0)=L2. P PO)=1. (11)
aF
We have a Cauchy problem for the vector-matrix equation (7) with initial
conditions (11)
We apply to the problem (7), (11) the integral Laplace transform. Let us denote
y(p) the Laplace transform of the desired function. Then we have

A(p)y(p)=y,/p+y(0)+ LIN()].

(8)

o .

¥(p)= A" (P)ly,/p +y(O0)]+ 4" (p)LIN)]. (12)
ptay =V 0 0 0
—aC’ p+b, 0 0 0
A(p)=| 0 b p+a, O 0 (13)
0 0 0 pto, Pr
0 0 0 0 p+a,

Since the Laplace transform is a linear transformation, the search for a solution
to this problem is carried out by an iterative procedure. Denote the solution of the
linear part of the problem, ie without taking into account.

This system of equations can be reduced to three equations, because the
equations are relative toy,(r) and y.(r) do not depend on the first three variables.

Then instead of (12) we will have

Y(p)= B (P)ly,/p +y(O0)]+ B (P)LIN(Y)]. (14)
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pta, v 0

B(p)=| —aC’ p+b, 0
0 -b pta,

m

We have a linear approximation:

YO (p) =B (p)ly/p+y(O)],
The determinant of the matrix B(p) is obtained in the form

A(p) = B(p)|=(p* +bp+b)(p+a,)=A(p)p+a,);
h=a,+b,; b=a,b, —vaC®.

We have: ) _
| (p+b,)(p+a,) v(p+b,) 0
B'(p)=——| aC’(p+a,) (p+a, )p+a,) 0 - (15)
A(p) /
aC’b, bm(p+an) (p* +bp+b,)

We write in Vect(_)r form the initial conditions (11) taking into account the
perturbations (9).
d(p)=17; b,C’p O1';
We have for the linear part of the vector equation (14):
y?(p)=B"(p)d(p), (16)
or in component form:

A T2

Oy =
Yo' (p) p p+a, p +blp+b2’

[fzk cos ot +f3k sina)t)}, w<0,

[fzkcha)t + ffsha)t], >0,

Numerical values f/ are determined after substitution into expressions for the

—a t B
vy =1+ fle ™ +e =g’k (). (17)

coefficients of numerical values f/ of the corresponding parameters of the system of
equations [12]:
a, = 2:10%v=0,1;b,=0,005;aC’ =0,4; ¢, = 0,12; ,, = 0,17; p, = 0,17;
Next, we use the obtained solution in a linear approximation to determine the
nonlinear part N(y) of the problem.
Since the nonlinear parts include expressions for E(¢), and implicitly P(r), we

write the solutions of the linear approximations for for these functions.
E(O)(t) — E° (1 _ eaEt); P(O)(t) — p" (1 _ eapt);

- t - t

FOt)=y"@®)=a; +aje " +aje " ;
Taking into account the obtained solution of the system of equations in the
linear approximation, we have the following expressions for the nonlinear
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components of this system:
N, =nb ¥ () EV () + 3" (Ol (v O+ 357 (0) = 75 v (0)]

- t -
= nbCE'[1-¢ 182 () + g (0 {7 Tele ™ + g () + & 0]~ 7Sg' ). (18)
Substitute the expressions for g'(r), g°(¢t), g°(¢) (solution of the linear part of the
system of equations) to (18) and perform the corresponding transformations. We get:

—a t _ ~(a, + D) .
N;?)(t)=r0‘ +rle " 4 ple P 1o @) [, cos ot + r; sin et ]

M) cos2amt + 1, sin 2wt ]. (19)

Laplace transform can now be applied to expression (24). We get:
1 4

1 1
T Ve P T Ve,
LN, 1= 3Tl
P =P T VsaP T Vs
Applying to this expression an algorithm of equivalent simplification to the
chain of the second order leads to the following expression:

VO, TP
"op PV
where through %2, k=0,5, denote the coefficients obtained by simplifying the

+e7'[r) coswt + 1, sinwt]+e

fractional-rational expression.
The nonlinear part is relatively C,(r) uniform

N = 30— 0 (1= 2)= 2 @)+ b3 = D) EV 1)

b :
= u, + Z{e PO +ud, cos(@®t —7®) + 12, sin(@®t — 7®)]};
k=1
In the image space, this expression corresponds

*) k) (k) (k) (k)
(0)([?)_ 0 _I_Z—T d dl (p+f 2)+d2ka)2 .
p (p+pYy (")
The presence of a delay ﬂ(") leads to a nonlinear fractional-rational expression.

We approximate [5] the multiplier e’ also by a fractional-rational expression,
limited to the second order of approximation:

wp 12-6tp+ (V) p?
€ ~ (k) (k)\2 2"
12+67%p+(c) p

Then we will have:

3 _12/7%)y, (k)

p p2 + 6/r(k)p + 12/(7“‘))2
pP-6/t%p+ 12/(r(k)) (k)p + [ulk)ﬂ(k)) + u(k)a)(k)]

pr+6/t¥p+ 12/(T(k)) p’+ul”p+ul”

—2
— u
N, (p)=—"-+

Or

p3 + },i(k)p2 + rz(k)p + ],.3(k) u() VOZP + V]Z 20
N (p) Z (k) 3 ) .2 ) "~ R — - (20)
klp +q9, P t49, p t4; ptq, p p tv,p+v;

We obtain the expression for the nonlinear part of the equation with respect to.
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iy at\
N, =N, =bC(VE®)=b CPWOEY W) =b[f; + fie ™ +g, (t)]EO(l —e ’F )

—(am+aE)t

=BCELS - £ 1 fle T+ fle +g,()-e g (1)

In the image space, this expression corresponds to:
=3 2 3 3 —3 —3
2 Vo, PtV Vop+V
L[N, (l‘)]=—0+z . 6k3p 6k+l3 20123 1_3-
’ P =P TVguP TVgs P P TVPTV3
Using the algorithm of equivalent simplification of fractional-rational functions
[5], the expression L{N, } for Laplace image space takes the form

—13
zvl0

ko, ok
h+hp

k
LIN Y=N(p)="+ .
Wy =N (P) p pHrp+r

Substitute the obtained expressions in (14).

Y™ (p)=Y"(p)+ B (p)N"(p)=Y(p)+V(p), m=0,1,2,....  (21)
[ p+b, " p+b, 0 __’”_zl_l_ rp+r ]
A (p+a,)h, p P Hrp+n
0 p—l—a 2 2 2
ripy=| % i 0 ||Z4+ 2 | (2
A, A, p p trptrn
acobm bm (p + bm) 1 r_23 rl3p + r03
(p+a,)A  (p+a,)A  p+a, || p p+rp+r |

After performing the appropriate actions in this expression, moving to the space
of the originals and adding linear parts according to (21), (22), we obtain the solution
of the system of equations in the first approximation in this form.

a l _ . —y, 1
y (@) =ql* +q2* ™ +e " [q" cosat + ¢\ sinwt]+e F [V

These expressions take into account the solution of the system of equations in
the linear approximation. Subsequent calculations are performed by similar
algorithms, which contain the products of fractional-rational expressions in Laplace
image space in the form of terms of the simplest chains (first and second degree),
reduction of similar and record the results in the original space in a similar form.

Conclusions

The model of antiviral immune response of the target organ as a basic model of
infectious disease is considered. An iterative numerical-analytical method for solving
the Cauchy problem for a system of nonlinear differential equations is proposed,
which makes it possible to obtain a solution in quadratures. The basis of this method
is an iterative numerical-analytical method for solving nonlinear boundary value
problems using algorithms for approximating fractional-rational expressions.

The proposed method for solving nonlinear boundary value problems can be
used to solve a wide range of nonlinear problems in mathematical physics.

(0 ¢
Cos@,t+ v, sin@,t].
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Anmomauyia. Pozensidacmvcs 3a0aua mamemamuyno2o MoOento8ants IMyHHOI 8i0no6ioi Ha
gipycHi  inghexyii. Mamemamuuna MmoOenb npoyecy ONUCYEMBCSA  CUCMEMON)  HEeNIHIUHUX
oughepenyiinux pisHaHb i3 3anizHenHaM. Po3g'azanns yiei cucmemu pigHAHb 30IUCHIOEMbCA
imepayiiinumM YUCI080 -aAHANIMUYHUM MEeMOOOM i3 3ACMOCYBAHHAM IHME2PANbHO20 NePemBEOpPeHHs
Jlannaca. Ompumani pe3yiomamu MamemMamuyHo20 MOOENO8AHHA HAOAIOMb  MONCTUBICMb
supiwysamu 3a0adi OOCNIONCeHHs | NPOSHO3YBAHHS PO3GUMK) IHQEKYIUHUX 3aX80pI08AHL MdA
3acmocogysamu pe3yibmamu MoOen08anHs 0 OlaeHOCMUKU NePCOHIUKOBAHUX X8OPUX.

Knrwwuosi cnosa: 3adaua Kowi, inghexyitini 3axeoprosanus, iMyHHA cucmemd, iHmecpaibHe
nepemeopeHHs, imepayilini cxemu, HeliHIHI OupepeHyitiHi PiGHAHHSL.
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