DOI: 10.30888/2415-7538.2021-22-01-004

УДК 546.05:549.613.4

THE KINETIC ANALYSIS OF MULLITE CRYSTALLIZATION FROM COPRECIPITATED BY AMMONIA PRECURSORS DURING HEAT TREATMENT

КИНЕТИЧЕСКИЙ АНАЛИЗ КРИСТАЛЛИЗАЦИИ МУЛЛИТА ИЗ СООСАЖДЕННЫХ АММИАКОМ ПРЕКУРСОРОВ В ПРОЦЕССЕ ТЕРМООБРАБОТКИ

Filatova N.V. / Филатова Н.В.

c.ch.s., as.prof. / к.х.н., доц. ORCID: 0000-0001-7752-3496

Косенко Н.Ф. / Kosenko N.F.

d.t.s., prof. / д.т.н., проф. ORCID: 0000-0001-8806-7530

Badanov M.A. / Баланов M.A.

Ivanovo State University of Chemistry and Technology, Ivanovo, Sheremetev avn. 7, 153000 Ивановский государственный химико-технологический университет, Иваново, Шереметевский просп., 7, 153000

Аннотация. Для синтеза муллита использован метод соосаждения аммиаком из раствора нитрата алюминия и коллоидного кремнезема. Выполнен термический анализ полученного прекурсора. Рассчитана эффективная энергия активации кристаллизации муллита из двухфазной дисперсной системы.

Ключевые слова: муллит, синтез соосаждением, гетерогенное соосаждение, кинетика кристаллизации, уравнение Аврами, энергия активации

Вступление.

Муллит $3Al_2O_3\cdot 2SiO_2$ — единственное соединение в системе Al_2O_3 — SiO_2 , которое существует при атмосферном давлении. Для него характерны уникальные физические и химические свойства и технологические возможности [1–3]. Вследствие этого муллит постоянно находится в центре внимания исследователей и технологов.

Среди способов синтеза муллита можно отметить золь-гель метод, соосаждение дисперсий и др. [4,5]. Эти методы дают возможность получить продукт с высокой однородностью и чистотой, который способен спекаться при пониженной температуре. Кинетика и механизм образования и кристаллизации муллита также привлекает внимание ученых [6–11].

В данной работе выполнена оценка энергии активации кристаллизации муллита из соосажденной двухфазной дисперсии.

Экспериментальная часть.

В работе были использованы следующие химические реактивы: $Al(NO_3)_3 \cdot 9H_2O$ квалификации "ч.д.а."; аммиак, 25 % водный раствор "х.ч."; водный коллоидный кремнезем, полученный ионообменным методом из кристаллогидрата метасиликата натрия $Na_2SiO_3 \cdot 5H_2O$.

Аммиак (6 М раствор) добавляли в смесь нитрата алюминия (0,25 М раствор) и коллоидного кремнезема при постоянном перемешивании до рН 6,5—7. Осадок отфильтровывали, промывали дистиллированной водой и сушили при 100–105 °C до состояния порошка, который растирали в ступке.

Термический анализ выполняли на приборе ... с воздушной продувкой 50 мл/мин; температурная программа до 1400 °C при различных значениях скорости нагревания образца (1, 3, 5, 10, 15, 20, 30 и 50 °C/мин).

Результаты и их обсуждение.

На рис. 1 приведены кривые термогравиметрии (ТГ, ТG) и дифференциальной сканирующей калориметрии (ДСК, DSC) для высушенного соосажденного продукта. При низких температурах (до $\sim 300~^{\circ}$ С) наблюдался набор эндотермических пиков, описывающих отщепление адсорбционной и гидратной воды. Затем следовало медленное удаление воды до $\sim 600~^{\circ}$ С, которое соответствовало переходу тригидрат $Al(OH)_3 \rightarrow$ моногидрат (бёмит) AlOOH. Впоследствии масса образца оставалась постоянной, поэтому наблюдаемые экзотермические пики можно объяснить шпинелеобразованием (около 900 °C) и кристаллизацией муллита из шпинельной фазы (выше 1200 °C).

В работе [11] была проанализирована кинетика образования муллита из прекурсоров, полученных золь-гель методом, сопоставлена кинетика реакции в двухфазных и однофазных гелях. Было показано, что муллитообразование в двухфазных гелях можно описать уравнением Аврами, которое определяло механизм роста кристаллов, контролируемый диффузией. Этот процесс начинался при ~1250 °C и имел энергию активации E_a порядка 10^3 кДж/моль.

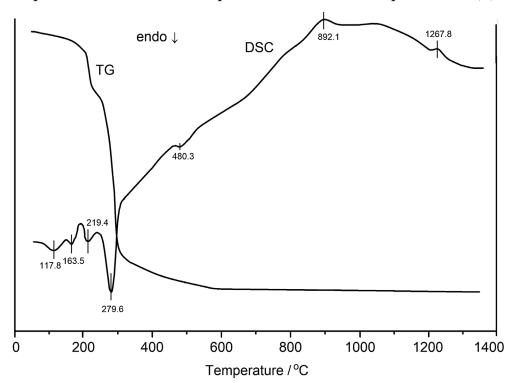


Рис. 1 Кривые ТГ и ДСК для высушенного соосажденного продукта Авторская разработка

Поскольку при соосаждении нами была получена микрогетерогенная суспензия, т.е. двухфазная система, была предпринята попытка определения энергии активации E_a по уравнению Аврами:

$$ln\left(\frac{T_{max}^2}{h}\right) = \frac{E_a}{RT_{max}} + ln\frac{E_a}{RA'} \tag{1}$$

where T_{max} — температура экзотермического пика, который относится к муллитообразованию на ДСК-кривой; h — скорость нагревания образца, K/c, R — универсальная газовая постоянная (8,314 Дж/(моль·К)); A — предэкспоненциальный фактор уравнения Аррениуса:

$$k = A \exp(-E_a/RT), \tag{2}$$

где k – константа скорости реакции.

В соответствии с уравнением (1) E_a можно определить по тангенсу угла наклона $tg\alpha$ зависимости в координатах $ln\left(\frac{T_{max}^2}{h}\right) - \frac{1}{T_{max}}$: $E_a = R \cdot tg\alpha$.

Примеры фрагментов ДСК-кривых, полученных с разными скоростями нагрева, для некоторых муллитообразующих суспензий приведены на рис. 2.

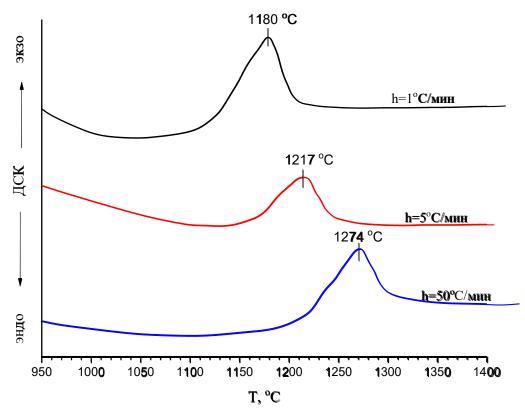


Рис. 2 Фрагменты кривых ДСК для МОС, синтезированных при рН 6,5, при различной скорости нагревания образцов

Авторская разработка

Кристаллизация аморфных веществ всегда сопровождается выделением тепла, которое дает экзотермический пик на ДТА/ДСК кривой. С увеличением скорости нагревания отклонение ДТА/ДСК кривой, которое относится к трансформации фазы, смещается в сторону более высоких температур.

Экспериментальные и расчетные данные приведены в табл. 1.

На рис. 3 приведена зависимость в координатах уравнения Аврами для кристаллизации муллита из соосажденных прекурсоров муллита.

Рассчитанное значение эффективной энергии активации составило (740 \pm 40) кДж/моль. Эта величина находится в хорошем соответствии с энергией активации диффузии ионов Si^{4+} в слое муллита, оцененной в диапазоне от 730

до 780 кДж/моль [6].

Таблица 1

Данные для определения энергии активации

T _{max} , °C	T, K	10^4/T	h, К/мин	h, K/c	T^2/h	$ln(T^2/h)$
1180	1453	6,882	1	0,0167	126672540	18,66
1203	1476	6,775	3	0,0500	43571520	17,59
1217	1490	6,711	5	0,0833	26641200	17,10
1223	1496	6,684	10	0,1667	13428096	16,41
1242	1515	6,601	15	0,2500	9180900	16,03
1252	1525	6,557	20	0,3333	6976875	15,76
1260	1533	6,523	30	0,5000	4700178	15,36
1274	1547	6,464	50	0,8333	2871851	14,87

Авторская разработка

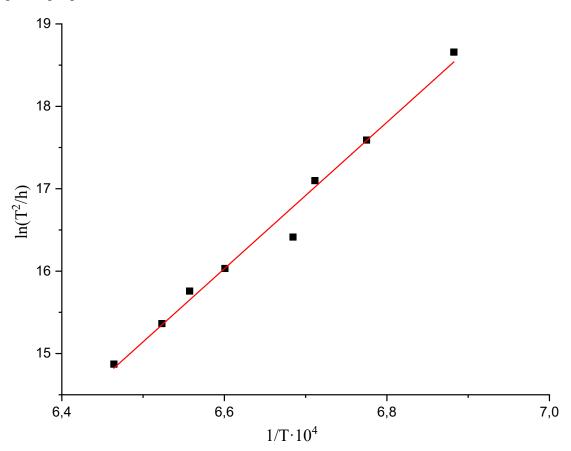


Рис.3 Зависимость в координатах уравнения Аврами для кристаллизации муллита из соосажденных прекурсоров муллита Авторская разработка

Заключение и выводы.

Синтезирован прекурсор муллита в виде микрогетерогенной суспензии методом соосаждения аммиаком из раствора нитрата алюминия и коллоидного кремнезема. По уравнению Аврами рассчитана эффективная энергия активации кристаллизации муллитообразующей дисперсии: (740 ± 40) кДж/моль. Ее значение находится в хорошем соответствии с литературным значением энергии активации диффузии ионов Si^{4+} в слое муллита.

<u>Выпуск 22</u> <u> Пом 1</u>

Литература:

1. Schneider, H. Structure, and properties of mullite – a review / H. Schneider, J. Schreuer, B. Hildmann // J. Eur. Ceram. Soc. – 2008. – Vol. 28 – No 2. – P. 2382–2387. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.03.017

- 2. Hirata,Y. Theoretical and experimental analyses of thermal properties of dense polycrystalline mullite / Y. Hirata, T. Shimonosono, Sh. Itoh, Sh. Kiritoshi. // Ceramics Int. 2017. Vol. 43. No 13. P. 10410–10414. http://dx.doi.org/10.1016/j.ceramint.2017.05.076
- 3. Krenzel, Th.F. Thermo-mechanical properties of mullite ceramics: New data / Th.F. Krenzel, J. Schreuer, D. Laubner, M. Cichocki, H.Schneider // J. Am. Ceram. Soc. 2018. Vol. 102. No 1. P. 416–426. http://dx.doi.org/10.1111/jace.15925
- 4. Satoshi, S. Homogeneous precipitation and thermal phase transformation of mullite ceramic precursor / S. Satoshi, C. Contreras, H. Juárez, A. Aguilera, J. Serrato // Int. J. Inorg. Mater. 2001. Vol. 3. No 7. P. 625–632. http://dx.doi.org/10.1016/S1466-6049(01)00166-0
- 5. Zhou, M. Coprecipitation and Processing of Mullite Precursor Phases / M. Zhou, J.M.F. Ferreira, A.T. Fonseca, J.L. Baptista // J. Amer. Cer. Soc. 2005. Vol. 79. No 7. P. 1756–1760. http://dx.doi.org/10.1111/j.1151-2916.1996.tb07992.x
- 6. Sung, Y.-M. Kinetics analysis of mullite formation reaction at high temperatures / Y.-M. Sung // Acta Mater. -2000 Vol. 48 No 9. P. 2157–2162. http://dx.doi.org/10.1016/S1359-6454(00)00032-X
- 7. Okada, K. Activation energy of mullitization from various starting materials / K. Okada // J. Eur. Cer. Soc. 2008. Vol. 28. No 2. P. 377–382. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.03.015
- 8. Takei, T. Crystallization Kinetics of Mullite in Alumina–Silica Glass Fibers / T. Takei, Y. Kameshima, A. Yasumori, K. Okada // J. Amer. Cer. Soc. 2004. Vol. 82. No 10. P. 2876–2880. http://dx.doi.org/10.1111/j.1151-2916.1999.tb02171.x
- 9. De Oliveira, T.C. The kinetic of mullite crystallization: Effect of water content / T.C. de Oliveira, C.A. Ribeiro, D.D. Brunelli, L.A. Rodrigues, G.P. Thim // J. Non-Cryst. Solids. 2010. Vol. 356 (52). P. 2980 2985. http://dx.doi.org/10.1016/j.jnoncrysol.2010.05.078
- 10. Magliano, M.V.M. Mulitização em refratários utilizando diferentes fontes precursoras: revisão / M.V.M. Magliano, V.C. Pandolfelli // Cerâmica. 2010. Vol. 56 (340). P. 368 375. http://dx.doi.org/10.1590/S0366-69132010000400009
- 11. Li, D.X. Kinetic mechanisms for mullite formation from sol-gel precursors / D.X. Li, W.J., Thomson // J. Mater. Res. 1990. No 5. P. 1963–1969. https://doi.org/10.1557/JMR.1990.1963

Abstract. During recent years, a considerable quantity of studies was devoted to the obtaining of mullite synthesis precursors. Co-precipitation allows to obtain fine precipitates with a high homogeneity. Kinetics and mechanism of the mullite formation and crystallization are also under consideration. A mullite precursor in the form of a suspension was synthesized by co-precipitation from an aluminum nitrate solution and colloidal silica. The effective activation energy of the mullite crystallization from a dispersion was calculated by the Avrami equation. The thermal analysis of a mullite-forming precursor was made. The effective activation energy of the mullite crystallization from diphasic system was calculated as (740 ± 40) kJ/mol that corresponded to the activation

energy values for the diffusion of the Si^{4+} ions in the mullite layer ((730–780) kJ/mol) given in a literature.

Key words: mullite, coprecipitation synthesis, heterogeneous coprecipitation, crystallization kinetics, Avrami equation, activation energy.

Исследование проводилось при помощи ЦКП ФГБОУ ВО ИГХТУ Работа выполнена при поддержке гранта на выполнение инициативных научно-исследовательских проектов Ивановского государственного химико-технологического университета (31-ISUCT-21)

Статья отправлена: 05.06.2021 г.

© Филатова Н.В.