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Abstract. The work is devoted to the study of various methods for constructing estimates of
parameters of finite mixtures of distributions, classical algorithms and their applications. The main
focus was on maximum likelihood estimation, the Expectation-Maximization (EM) algorithm, and
its further testing on modeled data. For conducting research and experiments, a program was
written that was used to consider various scenarios of the method behavior depending on the input
parameters. It is shown that the EM algorithm can give more accurate estimates with both strongly
overlapping and well-separated components for different initial value selections.

Kniouesvie cnosa: Finite mixtures of distributions, estimates of parameters, Expectation-
Maximization algorithm, maximum likelihood estimation

Introduction.

Numerical data is deeply embedded in our lives, and it is impossible to imagine
any industry without studying their features. Many works are devoted to the problems
of data analysis, but the potential of working with them is unimaginable, because
every day is not like the previous one, and all the data is different from each other.

Primary data analysis begins with descriptive statistics, where a suitable
distribution is usually selected for existing observations. But in many areas of
research, it is often not enough to "fit" just one classical distribution to the base data
set. In particular, if the collected data can be considered as coming from two or more
subpopulations, then you need to choose the composition of distributions.

Such compositions are referred to as distributions for the mixtures or mixtures
models. They are determined by the parameters of each component and the mixing
proportions in which the components of the mixture are located, and will be
investigated in this work.

Mixtures of distributions are widely used for mathematical modeling of
numerous phenomena in various fields: from biology to Economics and from physics
to financial analysis. Therefore, they are a significant and powerful tool for modeling
heterogeneous data. And the decomposition of this mixed distribution into its
components, which is accompanied by the division of the main groups, can give
completely new estimates of parameters and, as a result, new conclusions.

The model of finite mixtures of distributions

Mix distributions are increasingly used to model heterogeneous data in various
important practical situations where data can be considered as arising from two or
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more subpopulations (components). The problem of decomposing a mixture into its
components, i.e. estimating the parameters of a mixed distribution, has a long history
and goes back to Pearson [1], who considered a mixture of two components with
equal variances using the method of moments.

The mix distribution is the addition of distributions that occurs when a sample is
taken from a heterogeneous population with different density functions. The final
mixture can be defined more formally as follows (distribution of a random variable X

with a density function of the form):
k

905 W) = ) mf(x,6)
i=1
final distribution of the mixture with k components and ¥ = (14, ..., Ty, 04, ..., ;).
Thus, f(x,6;), j =1,...,k, denote the density of the mixture components with

the parameter &; and the mixing ratio or mixing weight 7y, ..., ;. — are positive and
Zil:zlni[ = 1
It is not necessary that the density of components f(x,&;), j =1,...,k, belong

to the same parametric family, but throughout the work we will assume that they are
Gaussian. Random variable X with density function:
f(x,0) = ¢(x,p,0%) = (2m0?) ™2 exp(—= (x — w?/a?),

where 8 = (i, %), is called a normal or Gaussian distribution with parameters
pand o,

Two-component Gaussian mixtures

Let's start with two-component Gaussian mixtures, so here are some useful
properties and examples. A distribution with a density function

g, W) = mid(x,uy,07) + md(x, 4y,05)

it is called a two-component Gaussian mixture, where @(-) is the density of the
Gaussian mixture and ¥ = (74,7, iy, 45,07, 05). To ensure identifiability ¥, the
components of the averages are assumed to be in ascending order, i.e. [y < [is.

Separation of components of a two-component Gaussian mixture with
gf = of = 1it can be expressed as the difference between the average components,
which is equal to A4 = p; —p,. Mixtures with A = 2 are called strongly
overlapping mixtures, while mixtures with 4 > 2 are referred to as well-separated
mixtures. This classification 1s approximately equal to the definition of unimodality
of a mixture.

There is a fairly sufficient condition that the mixture is unimodal if

2 2?afa§

A 4(ei+a])
unimodal for 4 = 1.84. Behboodian [2] also considered this problem and derived the
following sufficient condition for a mixture of two Gaussian distributions to be
unimodal: A < 2min(of,03).

Let's assume that X is a random variable with a two-component distribution of
the Gaussian mixture. The average value of W,, and the variance @2 of such a
mixture are given by the formulas:

U = Ty + Tolds,

. According to this condition, the mixture with ¢f = o7 =1 is
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Oy =Ty (07 + pi)+ m, (07 + pu3) — pi,.

Here are some examples of two-component Gaussian mixtures. The first figure
shows mixtures with standard deviations ¢ = g5 =1, mixing proportions
m, = m, =05 and various average components. Starting with a strongly
overlapping mixture, where 4 = 1, the second component is displaced three times
until a well-separated mixture with A = 4 is formed.

The following fig. 1 shows the change in mixing proportions. Thus, the standard
deviations of the components are again chosen to be 1, the average values of the
components are {; = 5 and i; = 9, and the mixing proportions are now equal to T; =
0.7 and m; = 0.8, respectively.
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Fig. 1: densities of two-component Gaussian mixtures with equal dispersions and
different mixing proportions.

Maximum likelihood estimates

There are a large number of estimation methods, including moment methods,
graphical estimation procedures, maximum likelihood estimation, minimum 9>
estimation, and Bayesian estimation. The question arises as to which estimation
method should be used when estimating the distribution parameters of the mixture. A
partial answer can be found, for example, in the book [3]. The authors made a
comparison between the moment method and the maximum likelihood estimation
method and showed that the maximum likelihood estimation is higher. Also, other
authors compared several estimation methods and similarly concluded that the best fit
is achieved using maximum likelihood estimation.

Therefore, in my work, I use exactly the maximum likelihood estimation, which
includes maximizing the likelihood function or, equivalently, maximizing the
logarithmic likelihood function.

Let x = (x4,...,%;) denote independent observations from a random sample of
size n of a random variable X with a density function f(x,&), where & is the
parameter vector that we want to estimate. Then

1e0= | [re.o

denotes the likelihood function, abbreviated as probability.
It is often more convenient to use the logarithm of the likelihood function
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instead of the likelihood itself, which is the probability logarithm given as

logL(8,x) = Zlngf(xs,ﬂj

This makes sense, since the logarithm is a monotone transformation and L will
take its maxima at the same parameter values as L in the logarithm. The maximum
likelihood estimates 8 for @ is the value that maximizes the probability L(8,x),
which is equal to ~

8 = arg mﬂaxL(S,x)

This definition allows for the possibility of more than one maximum likelihood
estimates. In fact, multiple maximums may occur in several practical applications.
However, for many important models, the maximum likelithood estimate is unique
and, in addition, the likelihood function itself is differentiable and top-bounded. In
such cases, a solution can be found by solving the corresponding estimation equation.

Probability of distribution of the mixture

In the case of distribution of the mixture, everything is somewhat more

complicated. The probability can be written as
n k

LC¥,x) = Hg(xs,% [] Zﬁ-f(_xs,ﬂd

5=1 \j=1

logL(¥,x) = Zlﬂgg(xs,lf"] Zlnan f(xs,6;)

Corresponding equatlon.

n k
d
PT Z lnanjf(xs, 6;)=0
s=1 =1

they do not have any analytical solutions, so they require a numerical procedure.

There are many different iterative methods to solve this problem, including the
NR (Newton-Raphson) algorithm, the estimation method, and the EM algorithm [4].
They all have three main General requirements: (1) choosing reasonable initial
values, (2) an iterative algorithm that determines new estimates, and (3) an
appropriate stop criterion. However, the differences between these algorithms are
huge. While the NR algorithm, depending on the initial values, converges to a
solution very quickly, the EM algorithm is much slower, but less sensitive to the
choice of initial values.

Everitt [5] compared six algorithms for estimating the parameters of a mixture
of two Gaussian distributions and concluded that the NR algorithm and the EM
algorithm lead to the most satisfactory results. In this paper, the study of the EM
algorithm is chosen because, among other good properties, this algorithm has a
convenient implementation, a more accurate calculation, since it does not require the
calculation of second derivatives, and, in particular, the most reliable convergence. In
addition, the advantage of fast NR algorithm consistency disappears if the separation
between components is poor.
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Experiment: comparing different samples

Most problems with finding parameters occur when components are not well
separated. We decided to test this and conduct an experiment in which we investigate
several models of finite mixtures with a total volume of N = 400 artificially
modeled observations with different degrees of separation.

Throughout the simulation, the parameters of the first component are fixed with
an average value of five and a standard deviation of one. The standard deviation of
the second Gaussian distribution is also chosen to be 1, while the average value
changes. Thus, an increasing separation between these two components is considered.
That is, the difference 4 between the average values is equal to one, two, three, and
four.

To start, the mixing proportions are set to Ty = 7, = 0.5 and the average value
of the second distribution is changed. Starting with highly overlapping components,
where the average values are ft; = 5 and i, = 6, the second component is shifted
three steps until two well-separated components appear.

In addition to well-balanced components, two other cases are investigated. In the
first case, the first mixing weight is chosen to be 0.7, and the second is 0.3. The latter
case involves a further imbalance of components. Here we select one main
component with Ty = 0.9 and a small second component with T, = 0.1,

To visualize the numerical comparison of the estimates after applying the
algorithm and actual values for different mixtures, the results were furnished in fig. 2.

N 1 1 Ay o Mo Ajpg T al Ao T2 an Arg T T A o w0
1 5.07 5.64 0.57 5.97 5.08 0.89 1.0 1.17 0.16 1.03 0.79 | 0.23 0.5 0.78 0.28 0.5 0.21
2 5.07 5.30 0.23 6.97 7.09 0.12 1.0 1.10 0.09 1.03 1.06 0.03 0.5 0.59 0.09 0.5 0.40
3 5.07 5.02 0.04 T.9T 7.88 0.09 1.0 0.99 0.01 1.03 1.10 0.06 0.5 0.47 0.02 0.5 0.52
i .07 5.03 0.04 8.97 8.93 0.04 1.0 0.98 0.02 1.03 1.00 0.03 0.5 0.49 0.01 0.5 0.51

5.07 5.12 0.05 5.92 6.64 0.72 1.05 0.99 0.06 0.94 0.78 0.16 0.7 0.87 0.17 0.3 0.13

L} 5.07 5.42 0.36 6.92 7.88 0.97 1.05 1.13 0.13 0.94 0.57 0.37 0.7 0.92 0.22 0.3 0.08
i 5.07 5.04 0.03 7.92 7.84 0.07 1.05 1.03 0.02 0.95 1.00 0.05 0.7 0.69 0.01 0.3 0.32
8 5.07 5.02 0.05 8.92 B.8T 0.05 1.05 1.00 0.05 0.97 1.02 || 0.05 0.7 0.68 0.02 0.3 0.32
9 5.03 1.95 0.07 5.97 6.30 0.33 1.03 0.97 0.06 0.89 0.86 0.03 0.9 0.88 0.02 0.1 0.12
10 5.03 4.98 0.05 6.97 6.97 0.00 1.03 0.99 0.04 0.89 0.87 0.02 0.9 0.88 0.02 0.1 0.12
11 5.03 1.99 0.03 T.97 Tolh 0.17 1.03 1.00 0.03 0.89 0.88 0.01 0.9 0.88 0.02 0.1 0.12
12 5.03 5.00 0.02 8.97 8.03 0.04 1.03 1.01 0.02 0.89 0.88 0.01 0.9 0.89 0.01 0.1 0.11

Fig. 2: Table with numerical results of the algorithm (Author’s development)

Conclusion and conclusions

Can see how with increasing separation between the two components of
A = 1to A = 4, the method established for 25 iterations in almost all cases is
coming to all real parameter values.

The paper focuses on two-component Gaussian mixtures. In practice, however,
the composition of arbitrary mixtures of distributions is possible. Thus, if two clearly
well-separated peaks can be observed, or if there is an approximate knowledge of the
two components, the proposed procedure will lead to adequate evaluation results. If
more than two peaks appear, the method presented can be easily adapted.
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Annomayun. Paboma noceésweHa usyuyeHuro paziuyHblX Memoo08 NOCMPOEHUs OYEHOK
napamempo8 KOHEYHbIX cMecel pacnpeoeieHull, KIacCU4ecKUM aneopummam u cgepam ux
npumenenus. OCHOBHOE BHUMAHUE YOeNANOCh OYEHKEe MAKCUMATbHO20 NPABOON0000Us, ANeOPUMMY
Expectation-Maximization (EM) u eeco Oanvhetiwiemy anpoOupo8anHurd HA CMOOEIUPOBAHHBIX
Oannvix. [ npogedeHuss uccied008anusi U IKCNePUMEHMO8 HANUCAHA NPOSPAMMA, C HOMOWbIO
KOMOpou ObLIU PACCMOMPEHbl PA3TUYHbIE CYEHAPUU NOBEOeHUs Memood 6 3d8UCUMOCMU Om
6X0OHBIX napamempos. B xode pabomwi nokasamo, umo anecopumm EM npu pasnvix evibopax
HA4anbHblX 3HAYEeHUL Modcem 0asams Oojee MmoyHvle OYEeHKU KAK C CUNbHO NepeKpbl8aloujuMuUcs,
MAK u XOpouwio paz0eieHHbIMU KOMNOHEHMAaMU.

Knrwouegwvie cnosa: Koneunas cmecwv pacnpedenenuti, arcopumm EM, oyenxa napamempos,
OYeHKa MAKCUMATILHO20 NPABOON0000OUs
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